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ABSTRACT

Order of magnitude decreases in the size of scientific satellites and spacecraft could provide
concurrent decreases in mission costs because of lower launch and fabrication costs. Although

many subsystems are amenable to dramatic size reductions, miniaturization of the propulsion

subsystems is not straightforward. There are a range of requirements for both primary and attitude

control propulsion, dictated by mission requirements, satellite size, and power restrictions. Many of

the established propulsion technologies can not currently be applied to microspacecraft. Because of

this, micro-electromechanical systems (MEMS) fabrication technology is being explored as a path
for miniaturization.

INTRODUCTION

During the last few decades, increasingly larger scientific satellites have been built and launched to

provide powerful research tools. The expense of these large spacecraft is such that only one or two

satellites can be built per decade. The single large spacecraft approach brings with it the risk that

failure of the satellite to be deployed leaves a large void in scientific research.

In order to spread the risk of deployment and to reduce the costs associated with satellite launch

and operation, it is imperative to reduce satellite size by at least an order of magnitude. This sharp
reduction in size has far reaching consequences for all spacecraft subsystems, including the

propulsion. Virtually all current spacecraft utilize propulsion systems in one way or another. The

propulsion subsystem can account for anywhere from 20 to 90 percent of the total spacecraft mass.

Within limits, propulsion system dry mass can be scaled down. However, for conventional systems,

both electric and chemical, performance typically decreases with decreasing size. In most cases,

therefore, propellants will occupy a larger proportional mass and volume for smaller satellites than

for larger satellites with similar AV requirements. Electric propulsion systems are state-of-the art

for primary propulsion for larger spacecraft with high AV requirements. Microsizing spacecraft

and spacecraft subsystems, however, requires a re-evaluation of the propulsion system selection

with spacecraft characteristics such as required mission AV, available propulsion system mass,

available power, and plume contamination issues as prime criteria.

The simplest method to reduce weight, size, and cost of propulsion systems is to accept single

string design (with few exceptions) (Santo 1996). Because a large fraction of launch costs consists

of safety procedures surrounding the storage, handling, and loading of toxic and/or carcinogenic

propellants used by established propulsion systems, additional cost savings can be obtained by

utilizing environmentally safe propellants, with better performance and/or storage characteristics

than existing monopropellants.
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Figure 1. Technology Requirements for

Microspacecraft

One technology that has the potential to revolutionize micropropulsion is a manufacturing

technique that utilizes etching and photolithography, such as used in computer chip
manufacturing. Both chemical and electric propulsion concepts could benefit from this micro-

electromechanical systems (MEMS) technology. Some propulsion requirements that can not be

met with propulsion systems made with conventional manufacturing, could be replaced with
MEMS manufactured hardware, such as MEMS resistojets or MEMS monopropellant thrusters.

A major advantage of applying MEMS technology at this stage of development appears to lie in

the cost savings that can be obtained with batch fabrication. An additional advantage is the

potential of chip integration of thrusters with computing, communication, and sensing

equipment, allowing low cost, batch fabricated microspacecraft. Several programs have been

initiated to investigate MEMS technology for propulsion and power applications. For very low
mass/power requirements, MEMS machined conventional concepts would not be sufficient and

innovative new concepts need to be developed.

A number of papers have recently been written on the subject of propulsion options for

microsatellites. De Groot and Olesen (1996), in a review paper covering chemical propulsion
options, categorize systems by thrust level without regard to satellite size. Thrust level deemed

relevant for micropropulsion ranged from 10.6 to 10 N. Several mission scenarios were described

in that paper for spacecraft from 20 to 350 kg mass. An excellent review of microspacecraft
propulsion options was given by Mueller (1997). Mueller defined microspacecraft as spacecraft

of mass roughly smaller than 20 kg, power smaller than 0.02 kW, and dimensions approximately

0.4 m on the side. For scaling he assumed a power density of 0.001 kW/kg and subsequently

subdivided these spacecraft by evaluating whether scaled down versions of conventional

technology could be utilized or whether alternate (e.g. MEMS) technology need to be applied.

This paper reviews propulsion systems currently available or in development stages nearing

completion. Critical performance data for minimum thrust level of full size propulsion systems
are given as well as estimates of performance for a strongly scaled down version. Typical

mission criteria are reviewed and the most likely propulsion systems for the microspacecraft
mission are analyzed.
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MICROSPACECRAFr PROPULSION REQUIREMENTS

Many of the impulse requirements laid out in this section were generated during a micro-propulsion

workshop and are shown in Table 1 (JPL 1997). Typical science missions envisioned to be

executed with micro-spacecraft are single spacecraft planetary or asteroid missions, or multiple

spacecraft observer clusters. For many micro-spacecraft missions, the primary velocity increases

(AV increments) required during spacecraft maneuvers are equal to those of larger spacecraft. The

primary AVs refer here to large changes in orbit parameters (e.g. orbit transfer, repositioning,

deorbit, and planetary capture/escape). Secondary AV refers to smaller changes in orbit

parameters, such as orbit maintenance (e.g. stationkeeping and drag makeup), adjusting orbit

parameters (phasing of a single or multiple spacecraft), or attitude control [ACS] (e.g. three axis
control, momentum/reaction wheel dumping, or spacecraft spin control.). Microspacecraft primary

AV missions call for lower thrust levels corresponding to the spacecraft mass and power

availability. Microspacecraft secondary AV missions will additionally call for small impulse bits to

achieve similar secondary AV increments as larger spacecraft. In some instances, the widely

varying primary and secondary AV requirements of each mission type can only be met by a

combination of different primary and secondary propulsion systems, whether of impulsive or long

thrust duration(e.g, electric propulsion).

Table 1. Typical Microspacecraft Propulsion System Requirements (JPL Workshop):

Mission Primary AV/Duration ACS AV/Duration Thrust

(rn/s)/yr (m/s)/yr (mN)

Vesta Rendezvous

Europe Orbiter

DS-3 Interferometer

Earth Observing Clust.
Heliocentric Cluster

Impulsive Non-impuls.
3400/4.3 2.5 * S/Cmass 0.5 * S/Cmass

7000/2.7 2.5 * S/Cmass 0.5 * S/Cmass

2500/4.8 5.0 * S/Cmass 0.5 * S/Cmass

945 5500/5.8 5.0 * S/Cmass 0.5 * S/Cmass

...... 100-300/0.5-1.0

500/5.0 550/5.0 5.0 * S/Cmass 0.5 * S/Cmass

1400/3 6.0/1-2 1250

(from GTO)
3000/3 6.0/1-2

(from LEO)

1250

Clusters of small spacecraft are intended to replace single large observation spacecraft. Virtual

apertures created by multiple, formation flying spacecraft have the potential to obtain signals that

would be impossible to obtain with a single large spacecraft, and probably at a much lower cost.
These clusters could be launched from either a mothership or from a launch vehicle. In both cases,

most of the primary propulsion requirements could be performed by the launch vehicle. Primary

propulsion might be needed for a system that 'piggy-backs' on an existing launch vehicle and

requires orbit raising, or for an interplanetary or asteroid rendezvous mission. Typical mission

requirements for impulsive thrusters are 1.2 to 4.0 km/s. The same missions undertaken with

electric thrusters require 2.2 to 7.0 km/s. Depending on the scope of the planetary observation,

ACS functions can be done by either electric or impulsive propulsion systems and could possibly

be performed by one of the primary propulsion systems. For earth or planetary clusters, propulsion

could be used to maintain formation using non-Keplerian orbits (Janson 1994). Continuous thrust

is used to assume the non-Keplerian orbit. AVs for providing this non-Keplerian orbit depend on
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spacing and operational altitude. Propulsion for stationkeeping is also required to offset

disturbances. For deep space interferometer missions it is assumed that the launch vehicle delivers

the spacecraft in earth escape solar orbit. The only primary propulsion required is for "aperture

filling" maneuvers, where the distance between spacecraft varies from 0.1 to 1.0 km. For a 3-axis

stabilized spacecraft, the AV requirement would be 100 to 300 m/s for a 0.5 to 1 year mission.

For large spacecraft missions requiring large primary AV, the reduced wet mass provided by an

electric propulsion system makes it attractive compared to impulsive chemical system. Figure 2.

shows the ratio of propellant mass versus spacecraft dry mass (including propulsion system dry

mass) as a function of specific impulse for two values of AV, 1 km/s and 5 km/s. A cold gas

system (75 s Isp) would need 890 times the

spacecraft mass in propellant in order to

achieve a AV of 5 km/s. A high performance

bipropellant engine (315 s Isp) would require a

ratio of propellant mass to spacecraft dry mass

of 5.8, and an arcjet (600 s Isp) would only

require a ratio of 1.3. For PPTs (1500 s Isp)

and Ion thrusters (3200 s Isp), these ratios

would be approximately 0.4 and 0.19,

respectively. Issues that need to be addressed

to make a number of electric propulsion

systems amenable to microspacecraft are

power requirements, efficiency, weight of the

propulsion system dry mass, and

contamination issues. For several classes of

missions, such as low earth orbit (LEO)

missions, and major constellation maneuvers,

thrust level is also an important consideration.

100.0 * AV = 5 km/s

- Cold Gas • AV=lkm/s

Monopropellant
10.0 • Electrothermal

Hydrazine
" • Blpropellant

• • Low Power Arcjet
_" 1.0

0
• •

O. 1 Pulse Plasma Thruster • • •
Hall Thruster • I

• [
Ion Thruster • m

I
10.0 l

100 1000

Isp (s)

Figure 2. Propellant Mass to Achieve a AV of

1 and 5 km/s as a Function of Isp.

In some, but not all cases the electric propulsion system will require a longer trip time. For

instances where bum time must be low (e.g. thrust high) such as ballistic planetary capture, an

impulsive system must be used. Secondary AV missions can also require large AVs. For these

cases electric propulsion can save mass as long as slew rate and pointing accuracy requirements

are within the system's capability. The availability of power on the microspacecraft can impact

propulsion system selection. For primary propulsion, the payload is usually inactive, freeing up a

large amount of power for electic propulsion. However, during secondary propulsion the payload is

normally active, reducing the power availability unless the payload's reserve system can be used

(e.g. batteries for stationkeeping of communication satellites). For very low power spacecraft with

primary and/or secondary propulsion requirements power capability must be added or an impulsive

system used.

STATE-OF-THE-ART PROPULSION TECHNOLOGIES

Chemical. Of the chemical propulsion systems frequently used in spacecraft, cold gas propulsion

systems have the lowest complexity and cost. They can provide highly repeatable, extremely small

impulse bits for accurate orbit maintenance and attitude control. However, these systems also have

the lowest performance in terms of specific impulse (Isp) and total impulse for a given volume.

Cold gas thruster performance likely scales better than the performance of most conventional

chemical and electric thrusters. However, the low Isp still leads to storage problems. Leakage can
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become a liability for long mission durations, both in terms of attitude control (leaking gas could

exert a force), and in terms of lifetime. For minor primary propulsion functions and ACS tasks

with a relatively short mission duration and a low overall impulse, cold gas systems may work

well. For these applications, the simplicity and low dry mass are a benefit, despite the low Isp. The

minimum obtainable impulse bits are on the order of 10 pN-s.

Solid propellant thrusters are frequently used for orbit insertion. These thrusters are simple,

reliable, and have a high propellant density, giving high density specific impulse. Because of the

high density, easy storage (no leakage, no valves and/or regulators), and relatively high

performance, solid propellants could become prime candidates to perform primary propulsion

functions on microspacecraft. The main disadvantage is the lack of restartability which limits the

use to a single, high impulse burn for each thruster used. Together with issues such as packaging,

restartability need to be addressed before alternate propulsion functions are considered.

The most common propulsion system found on current spacecraft is the hydrazine monopropellant

system. Hydrazine monoprops are among the best currently available candidates for

micropropulsion applications for spacecraft larger than 10 kg. The storability, catalytic

ignitability, restartability, and good performance of monopropellant systems are sufficient reasons

to select this concept for some primary propulsion applications and many orbit maintenance

functions. The system simplicity has proven to provide reliable performance for many spacecraft.

The simplicity also allows miniaturization of all components without a large reduction in

performance. Because of the liquid storage, leakage is less of a problem than for cold gas systems.

Some loss in performance will occur when scaling down as the result of larger proportional wall
area which increases heat losses and viscous losses. However, the performance is expected to only

be slightly lower than larger versions. The smallest currently available hydrazine thruster can

operate at a thrust level of 0.19 N with a 206 Isp. Although additional research is needed, catalyst
beds can be created with sub-millimeter characteristic dimensions. Lower limits on flow velocity

through the catalyst bed and heat lwansfer out of the catalyst will determine the smallest possible

impulse bit. Impulse bit delivery spans a wide range, from 10 pN-s upwards. Issues that have to be

addressed are similar to its larger version, namely material compatibility and propellant safety and

handling issues. Some power is required to pre-heat the catalyst bed.

Hydrazine/nitrogen tetroxide (NTO) or monomethyl hydrazine/NTO bi-propellant thrusters have

the highest performance of chemical spacecraft propulsion systems. Because of their high

performance, they are frequently used for high impulse primary thrust applications, such as orbit

insertion, orbit raising, divert propulsion or interplanetary propulsion. The large dry mass required

can only be justified for high total impulse applications. Because of the large proportional dry

mass, bipropellant systems do not lend themselves well to being downscaled. An additional

problem of small scale bipropellants is the difficulty in obtaining thorough propellant mixing

within the small combustion chamber. This causes ignition delays and reduced performance. The

smallest available bipropellant thrusters operate at a thrust level of 2 N with an Isp of 265 s

compared to an Isp of 315 s for a 100 N thruster.

Electric. Three classes of electric propulsion devices are currently in use or near being used in

flight. These types are referred to as electrothermal, electrostatic, or electromagnetic devices,

depending on the principle by which the working fluid is accelerated to provide thrust.

Electrothermal thrusters create a high temperature fluid which provides a driving force by

acceleration through a conventional nozzle. The thermal energy of the fluid is partly converted to
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kineticenergy.Electrostaticthrustersprovidethrustby acceleratingachargedplasmabymeansof

a static electric field. Electromagnetic thrusters apply an electromagnetic field to accelerate an

electrically charged plasma. This electromagnetic field can be self-induced or externally generated.

The least complex electric propulsion system available is the resistojet. In a hydrazine resistojet,

the heat of the products of hydrazine, decomposed in a catalyst bed, is resistively augmented in a

heating coil. The increase in performance over monopropellants can range to 80 s, but this requires

0.3-0.4 kW of electric power. In scaling this concept to smaller size, previously stated concerns

about the propellant flow rate and heat transfer are valid. In addition, power becomes scarcer when

miniaturizing spacecraft, such that power consumption needs to be considered. Hydrazine resitojets

require too much power for microthrust applications.

Arcjets, also an electrothermal propulsion concept, operate by directly heating the propellant

(usually hydrazine passed through a catalyst bed to create hydrogen and nitrogen) with a stationary

arc in/near the nozzle contraction. The primary application of arcjets has been stationkeeping of

large satellites. Up to 600 s Isp has been demonstrated with 2.2 kW systems. Low power arcjets

perform well at 0.5 to 0.75 kW. Below 0.5 kW, the performance decreases (Sankovic and

Jacobson 1995) and current technology does not allow operation at microspacecraft power levels.

Ion thrusters are electrostatic propulsion devices. In an ion thruster, a plasma is created from a

propellant (usually xenon) by means of an electrical discharge in the discharge chamber. The

plasma is accelerated in an electrostatic field created by a set of ion grids (ion optics) placed at the
exit of the thruster. After the ions leave the thruster, a neutralizer cathode is used to return

electrons to the plasma. This prevents a negative charge from building up on the spacecraft. The
smallest ion thrusters available are the 10 cm diameter British DERA T5 and the DASA RITA

thruster. A 13 cm diameter Hughes XIPS thruster with an Isp of 2585 s, overall efficiency of
51.3%, and power of 300 Watt was launched on the ASTRA 1G satellite on December 3rd, 1997.

An experimental ion thruster was launched on-board the Japanese ETS-VI, but the spacecraft

failed to reach its intended orbit and the test program was severely shortened. Ion thruster loss

mechanisms, such as recombination, are dominated by wall effects. Reducing the physical size will

therefore reduce the efficiency and Isp. Ion thrusters could be considered for microspacecraft

propulsion if issues regarding these wall losses, plume neutralization, and high voltage arcing can
be resolved.

Another electrostatic concept is the Hall effect thruster. Xenon thrusters of this type have been

used on Russian spacecraft (Meteor, a.o.) for orbit-raising, drag make-up, and North-South Station

Keeping (NSSK). Russian Hall thrusters, such as the Stationary Plasma Thruster (SPT) and the

Thruster with Anode Layer (TAL) have been adapted and qualified for American standards in a

collaborative effort to develop a NSSK device for use on geostationary satellites. The SPT-100

typically provides 80 mN thrust at an Isp of 1600 s and 48% efficiency with an input power of

1.35 kW. A SPT-50 has been laboratory tested down to 0.09 W with an Isp of 700 s and efficiency

of 21% (Manzella 1996). At the design point of 0.3 kW, the SPT-50 operated at an Isp of 1160 s
and an efficiency of 32%.

The electromagnetic pulsed plasma thruster (PPT) has been in operation on satellites for many

years. The concept is relatively simple. A solid (usually teflon) propellant bar is spring loaded

inside an insulating container. A capacitor discharge strikes an arc at the propellant surface,

vaporizing several molecular layers of the solid and creating a plasma. The same discharge

generates an electromagnetic field. This field accelerates the plasma externally, providing a small
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thrustpulse.Capacitordischargefrequencyison theorderof 1Hz, with Ispof 1500 s. Typical
thrust levels are between 0.05 and 2 raN, which makes this device well suited for accurate

spacecraft positioning such as the multi-spacecraft interferometric experiment planned to be

launched in 2001. PPTs are possibly the best candidate for many micro-propulsion tasks. The

minimum impulse bits obtainable are on the order of 10 lxN-s, with larger impulse bits possible up

to 1 mN-s. A total impulse of up to 20 kN-s is targeted for larger systems. Performance does not

significantly deteriorate with power level. Total impulse and impulse bit size can be varied by

changing the fuel bar geometry.

Characteristics of currently available small thrusters, together with the manufacturer and model,

are shown in Table 2. For the Hall thruster, the values given are obtained for a SPT-50 thruster

tested at NASA Lewis Research Center. The PPT values are obtained from the specifications of

the Deep Space 3 mission.

Table 2. Characteristics of Potential Microthrust Propulsion Systems

Cold Solid Mono-- Bi- EHT Arcjet PPT Hall Ian

(:;as pro F prop
4 169000 190 2000 180 150 0.05 5.3 11Thrust

(mN)

Isp (s) 65 270 206 265 304 465 1150 1049 3171
1-bit 0.1 _ 2 30 0.06 100

(raN-s)
Power 9 9 18 350 1400 20 90 275

(w)
Pow/T 2.25 0.05 0.009 1.95 9.3 16 24.6

(W/raN)
Eft. (%) 90 30-35 8 24 62

_t S/C Prim./ Prim. Prim/ No No No Prim/ No No

Applic. ACS ACS ACS

Source Moog Thiokol Primex Aerojet Primex Primex Deep SPT- DERA
58x 125 STAR MR- MR- MR- Space 50 T5

5A 103C 501 507 3

TECHNOLOGY DIRECTIONS

An important issue that cuts across almost all propulsion systems is the feed system design. The

extremely small impulse bits required for a number of secondary functions requires fast valve and

regulator response times for propellant feed systems and an overall more compact feed system

design. MEMS technology could provide a means to reduce feed system component size. To this

end, programs have been initiated to address a nUmber of issues pertaining to valve closing,

material compatibility, thermal loads, and bonding of MEMS components to conventional

components.
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Chemical. A variation of the cold gas systems which has the potential to double the performance is

the tri-constituent gas thruster. A non-combustible, stochiometric mixture of hydrogen, oxygen

diluted with a third, inert gas is passed over a catalyst bed, where the H2/O2 reaction heats up the

third gas, providing approximately double the Isp of cold gas thrusters. The third gas can be
nitrogen or helium. For a system which is more volume then mass constraint, xenon could be the

third gas because of the higher density Isp. Because of the higher temperatures with Xe as third

gas, issues pertaining to catalyst bed and chamber survivability need to be addressed.

Renewed interest in subliming solid thrusters, first investigated in the sixties, has focused mainly

on micro-propulsion applications. The high density specific impulse, solid storage, controllability,

and capability to produce small impulse bits are all advantages that can be exploited for micro-

propulsion. Subliming solid systems can be designed passively by utilization of heat from the

spacecraft for sublimation, or actively with heating elements. The last type gives greater

controllability, but requires power. For a higher Isp, and to eliminate problems with recondensation

of the sublimation products during expansion, heat can be added with a resistive heating element.

An alternate solid proposed for micro-propulsion is the gas generator compound. A solid

compound, usually a compound with high nitrogen content, is stored in solid form. An ignition

source, such as laser, pyrotechnic or hot-wire, initiates decomposition. Exothermic decomposition

creates a high temperature gas which is accelerated to provide propulsion. No chemical reaction

takes place. Proposed uses of a solid gas generator compound is as a solid propulsion device or as

a solid storage cold gas system, with the solid compound packaged to replenish the gas in storage.

One potential bipropellant candidate is hydrogen/oxygen propulsion where the propellants are

stored until needed in the form of water. Electric energy is used to electrolyze the water into H2/O2,

which can be consumed immediately or stored in propellant tanks. A single propellant could be

used to provide ACS functions with cold gas accuracy and impulse bits, while the bipropellant

combination could be used for high Isp, high thrust level primary propulsion. An additional

advantage, described in detail in an accompanying paper (de Groot 1997), is that the same

hardware can be used as a fuel cell for energy storage to replace heavy batteries.

Electric. Janson (1994) describes a MEMS fabricated ammonia resistojet. Assuming a 50% thrust

efficiency and an Isp of 250 s, the thrust level of this resistojet is 0.41 mN. A proposed application

is the orbit raising of sub-kg class spacecraft.

Ion thrusters are the focus of several downsizing programs. Patterson (1997) is developing an 8 cm

diameter ion thruster. Estimated thruster characteristics range from an efficiency of about 37% at

1810 seconds specific impulse and 85 W input power, to an efficiency of about 54% at 2960

seconds and 300 W input power. Janson (1994) describes a micromachined ion thruster concept
with a projected Isp of 1900 s.

An additional electrostatic propulsion concept is a field emission electric propulsion (FEEP)

thruster. Currently being developed by European sources, this thruster concept utilizes liquid

indium or cesium as propellant. The expected Isp is over 8000 s with thrust level around 10 I_N.

Major technology issues which still needs to be resolved are neutralization of the ions in the plume,

feed system difficulties, and spacecraft contamination due to the metallic plume.

NASA/CR-- 1998-206608 8
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Operating Range. A generic graph showing

the operating range of the different

propulsion systems applicable for
microthrust propulsion is provided in Figure

3. The graphs indicated the thrust and total

impulse that the different concepts cover,
and does not account for the delivery of the

total impulse in terms of impulse bits. It is
clear that at the high total impulse and high

thrust level requirements a void exists that
makes a number of missions impossible

with current or near future technologies.

Figure 3. Operating Range for Potential

Microthrust Concepts.

MEMS Technology. A cross cutting technology that has the potential to aid in the

miniaturization of established propulsion systems is MEMS technology and laser lithography.

This technology can provide low cost miniature components for feed system valves, orifices,

catalyst bed, chamber, nozzle, and heating element. Fabrication details can be significantly

smaller than with conventional techniques. When used as a batch manufacturing process, costs of

component and systems can be very low.

MEMS technology is an extension of integrated circuit (IC) technology. The base material is
silicon. Silicon is an excellent mechanical material, with a strength comparable to steel (Si

modulus ~ 190 GPa). However, these excellent mechanical properties start to decrease above -
400 ° C. An alternative base material is silicon carbide SiC, which retains its mechanical

properties to well over 800 ° C. However, MEMS techniques applied to SiC are not as well
understood and much harder to implement with the desired details and accuracy than for pure

silicon. Common MEMS fabrication techniques are wet and dry bulk silicon etching, used to

micro-machine detailed devices such as proposed for micro-thruster development, and surface

micromachining, usually employed in the design of sensors. Additional techniques used include

bonding, both lower temperature anodic bonding and higher temperature diffusion bonding;

micromolding, which utilizes photolithography and electroform deposition to create detailed,

three dimensional shapes. Laser lithography, which uses high power, accurate lasers to machine

shapes from a silicon substrate is an alternate, non-etching technique.

Many satellite sub-systems can be designed and built with MEMS technology. Miniature sensors,

data acquisition, photovoltaic arrays, electronics, fuel cells, and communications antenna can all

be designed and build on a single silicon wafer, or on a stack of wafers, with MEMS technology.

The development of MEMS-based thruster technology would improve microspacecraft

integration issues (Janson 1994). Because of the fact that the current developments in
microthruster technology are based on conventional concepts, these MEMS-based microthrusters

need to be joined with non-MEMS based propellant storage vessels. The types of joints feasible

depend on the storage vessel material and pressure. These issues need to be addressed on a case

by case basis.

The transition to MEMS components, specifically MEMS valves, will probably magnify the

leakage problems of gaseous storage because of the inability to provide sufficient force on valve
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closing and the probability of contaminating the valve seat. MEMS research in the valve area

should be directed to mitigate these problems. For the short term, the easiest approach is to

perform experiments on concepts that are both easy to execute as well as have some benefit to

planned missions. To that end, MEMS based subliming thrusters (Mueller 1997), in which a

heating element is used to provide some control over the thrust, MEMS based cold gas thrusters,
MEMS based bipropellants, and MEMS based ion thrusters (Janson 1994) are being investigated.

SUMMARY

A number of established propulsion concepts have been analyzed for applicability towards

microthrust propulsion. A range of requirements covering the higher thrust levels and higher

required total impulse can not be achieved with the current propulsion technology, not even after

MEMS technology has been introduced for components. New propulsion technology is needed to

enable these missions with microspacecraft.

Candidates for primary propulsion with limited total impulse required are cold gas, solid

propellants and monopropellants. PPTs can be used for primary propulsion for selected missions.

Cold gas propulsion is acceptable for ACS functions but can only be applied for very low AV

missions with limited lifetime. Slew rate requirements can be met with cold gas thrusters. Tri-

constituent gas, monopropellants, and PPTs are also candidates for selected ACS micropropulsion

tasks. FEEP thrusters can be considered when certain technology issues have been resolved

New developments in fabrication technologies, such as MEMS or photolithography could improve
performance of conventional concepts on microscale. Such developments are being tested for cold

gas, subliming thrusters, resistojets, bipropellants and ion thrusters.
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